Forecast of the Global TEC by Nearest Neighbour Technique
نویسندگان
چکیده
We propose a method for Global Ionospheric Maps of Total Electron Content forecasting using the Nearest Neighbour method. The assumption is that in database global ionosphere maps spanning more than two solar cycles, one can select set past observations have similar geomagnetic conditions to those current map. ionospheric condition be expressed by linear combination seen past. average these leads common components being preserved and not shared several reduced. based on searching historical dates closest map as prediction correspond time shifts horizons. In contrast other methods machine learning, implementation only requires distance computation does need previous step model training adjustment each horizon. It also provides confidence intervals forecast. has been analyzed full years (2015 2018), selected days 2015 2018, i.e., storm non-storm performance system compared with CODE (24- 48-h forecast horizons).
منابع مشابه
k-Nearest Neighbour Classifiers
Perhaps the most straightforward classifier in the arsenal or machine learning techniques is the Nearest Neighbour Classifier – classification is achieved by identifying the nearest neighbours to a query example and using those neighbours to determine the class of the query. This approach to classification is of particular importance today because issues of poor run-time performance is not such...
متن کاملEnhanced Nearest Neighbour
Multimedia databases usually deal with huge amounts of data and it is necessary to have an indexing structure such that eecient retrieval of data can be provided. R-Tree with its variations, is a commonly cited indexing method. In this paper we propose an improved nearest neighbor search algorithm on the R-tree and its variants. The improvement lies in the removal of two hueristics that have be...
متن کاملNearest Neighbour Based Forecast Model for PM10 Forecasting: Individual and Combination Forecasting
Air quality forecasting using nearest neighbour technique provides an alternative to statistical and neural network models, which needs the information on predictor variables and understanding of underlying patterns in the data. k-nearest neighbour method of forecasting that does not assume any linear or nonlinear form of the data is used in this study to obtain the next step forecast of PM10 c...
متن کاملFuzzy-Rough Nearest Neighbour Classification
A new fuzzy-rough nearest neighbour (FRNN) classification algorithm is presented in this paper, as an alternative to Sarkar’s fuzzyrough ownership function (FRNN-O) approach. By contrast to the latter, our method uses the nearest neighbours to construct lower and upper approximations of decision classes, and classifies test instances based on their membership to these approximations. In the exp...
متن کاملOptimal weighted nearest neighbour classifiers
We derive an asymptotic expansion for the excess risk (regret) of a weighted nearest-neighbour classifier. This allows us to find the asymptotically optimal vector of nonnegative weights, which has a rather simple form. We show that the ratio of the regret of this classifier to that of an unweighted k-nearest neighbour classifier depends asymptotically only on the dimension d of the feature vec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Remote Sensing
سال: 2022
ISSN: ['2315-4632', '2315-4675']
DOI: https://doi.org/10.3390/rs14061361